
CHAPTER 5

Software Design:
Programming Methods
and Techniques

Si

DATA TO AND
) FROM EXTERNAL

SYSTEMS

N?

MEMORY
INPUT
AND

OUTPUT

DATA AND

INSTRUCTIONS

9900

ADDRESS

t 	

Do-D,

9900 ARCHITECTURE
	

Software Design:
Programming Methods
and Techniques

► 5

9900 ARCHITECTURE

The 9900 system is illustrated in Figure 5-1. The major subsystems are the 9900
processor, the memory for program and data storage, and input and output devices for
external communication and control. The processor controls the fetching of data and
instructions from memory or input devices and the transferring of data from one location
to another. The data and instructions are transferred 16 bits at a time in groups called
words. These words are addressed or located by signals on the 15 address lines A o

 through A„ (called the address bus). A 15 binary bit address will select one of 32,768
memory words.

Figure 5-1. General 9900 System Structure

Internally, the processor generates a 16 bit address but the least significant bit, A„, is not
sent to the memory. Each word is further broken down into two 8 bit groups called
bytes as shown in Figure 5-2. The first 8 bit byte of a word is located at an even address

= 0). The second 8 bit byte is located at an odd address (A 15 = 1). The byte selection
is done internally in the processor once the full 16 bit data word is obtained from one of
the 32,768 word locations in memory. Byte addressing is used only on instructions that
perform byte operations; most 9900 instructions are word operations.

The processor contains certain basic elements as shown in Figure 5-3. The timing and
control section is of primary interest to the hardware designer who must make certain
that all system events occur in the correct order and at the correct time. The software
designer is interested in what operations the ALU provides and the registers that
determine the instruction and data addresses. These registers are the program counter,
the status register, and the workspace pointer. In addition, the instruction register is of
interest in understanding the basic instruction cycle of the processor. The 9900 contains
other registers such as data address registers, ALU scratchpad registers, and so on. The
processor also provides hardware to decode instructions, control the ALU operation, and
to control the CRU input and outputs. These components all work together to provide
the basic instruction fetch and execution cycle of the processor.

5 - 2 	 9900 FAN , IILY SYSTENIS DESIGN

Software Design:
Programming Methods
and Techniques

9900 ARCHITECTURE

MOST SIGNIFICANT
	

LEAST SIGNIFICANT
8 BIT BYTE
	

8 BIT BYTE
(EVEN ADDRESS, A 15 = 0)

	
(ODD ADDRESS, A 15 = 1)

II

	

I 	III

	

0 	1 	2 3 	4 	5 6 	7 	8 9 10 11 12 13 14 15

MOST / 	 \ LEAST
SIGNIFICANT 	 SIGNIFICANT

BIT 	 BIT

16 BIT WORD
(ADDRESSED BY 14 MOST

SIGNIFICANT ADDRESS BITS)

Figure 5-2. 9900 Words and Bytes

Ao-A,,

ADDRESS LINES
(15 BITS)

DATA
ADDRESS

INSTRUCTION
ADDRESS

WORKSPACE POINTER
WP REGISTER

(16 BITS)

PROGRAM COUNTER
PC REGISTER

(16 BITS)

DECODER AND
TIMING

STATUS REGISTER
ST

INSTRUCTION
REGISTER IR

ARITHMETIC-LOGIC
UNIT ALU

INSTRUCTIONS

DATA

"IN 	 /

00-0 15

DATA LINES

51

Figure 5-3. Basic 9900 Elements.

9900 FAMILY SYSTEMS DESIGN 5-3

9900 ARCHITECTURE Software Design:
Programming Methods
and Techniques

INSTRUCTION REGISTER AND CYCLE

The instruction cycle that is performed over and over again by the processor consists of
the following basic operations:

1) Instruction Fetch — the contents of the program counter are sent out on the address
lines and a memory read is performed. The 16 bit instruction operation code word is
sent from the memory along the data lines D o through D15 and is latched in the
processor instruction register.

2) Instruction Execution — The instruction is decoded and executed. Usually, the address
of the data to be operated on (source data) is generated and a memory read cycle is
performed to get the dka into the processor. Then a destination address is generated
and a memory write cycle is performed to store the result of the operation at a desired
destination memory location.

3) The contents of the program counter are changed to indicate the address of the next
instruction and the processor returns to the instruction fetch operation.

This sequence is repeated continually as long as power is supplied to the processor.

The number of memory references required in the instruction operation depends on the
format that is used for the instruction. Instructions can have one of 9 such formats as
illustrated in Figure 5-4. The instruction code indicates to the processor how many
memory references are required to get all the information needed by the instruction.
The first memory read obtains the instruction code which determines which operation is
to be performed and how the data is located. A second and possibly a third memory read
may be required to obtain values or addresses for the data to be used in this operation.
An immediate instruction (format 8) consists of two successive memory words: the first
for the instruction code and a second word that contains the data constant to be used.
Other instruction formats contain a T s and/or a Td field to indicate the existence of data
addresses as part of the instruction. If a T s or Td two bit field contains a 10 2i the address
of the source or destination locations or both will be contained in the one or two memory
locations immediately following the instruction code word as illustrated in Figure 5-5.
In these cases, one or two additional memory reads are required to fetch these addresses
for use by the instruction to locate data in memory. Obviously, the more memory
references required to get all of the instruction, the longer the execution time for that
instruction. The programmer also needs to be aware of the number of words of memory
required for each instruction in order to estimate program memory requirements.

ANN.,

5-4 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
	 9900 ARCHITECTURE

Programming Methods
and Techniques

Instruction

F017110/

I (Arithmetic)

Instruction Cod* Fields*

CODE
	

B Td
	

D
	

Ts
	S

2 (Jump/CRU) CODE DISPLACEMENT

3 (Logical) CODE D Ts S

4 (CRU) CODE C Ts S

5 (Shift) CODE w

6 (Program) CODE T5 S

7 (Control) CODE 0000

i (Immediate) CODE 00 w

9 (Multiply, CODE D T, S

Divide, &
Extended Operation)

*The Fields are defined as follows:
CODE — Indicates the bits defining the Operation code
B — Byte/ Word Indicator (Single bit)
D — Workspace Register of the destination code (4 bits)
T, — Addressing mode of the destination operand (2 bits)
S — Workspace Register of the source operand (4 bits)
T, — Addressing mode of the source operand (2 bits)
C — Shift or Bit count (4 bits)
W — Indicates Workspace Register to be used (4 bits)

Figure 5-4. 9900 Instruction Formats

54

9900 FAMILY SYSTEMS DESIGN 5-5

9900 ARCHITECTURE Software Design:
Programming Methods
and Techniques

ADDRESS

(PC)

(PC) + 2

(PC) + 4

WORD

TO 	 Td

ADDRESS

(PC)

(PC) + 2

(PC) + 4

(PC) + 6

WORD

Ts 	 Td

CODE 10 S 00 D CODE 10 S 10 D

SOURCE DATA ADDRESS SOURCE DATA ADDRESS

NEXT INSTRUCTION DESTINATION ADDRESS

NEXT INSTRUCTION

TWO WORD INSTRUCTION THREE WORD INSTRUCTION

(PC) MEANS: CONTENTS OF THE PROGRAM COUNTER

Figure 5-5. Example Memory Requirements for Format 1 Instructions.

PROGRAM COUNTER (PC)

The program counter, abbreviated PC, contains the address of the instruction to be
executed as illustrated in Figure 5-6. Normally, after executing an instruction, the
contents of the program counter are incremented by two to locate the next instruction
word in sequence in memory. The programmer can control the contents of the program
counter (and thus control where the next instruction is to be found) by using branch or
jump instructions. These instructions offer the alternatives of taking the next instruction
in sequence or jumping to another part of program memory for the next instruction.

Ao A,4 A,,

PROGRAM COUNTER

I 	

A0-A, 4

ADDRESS OF THE INSTRUCTION
MEMORY

READ SIGNAL

INSIDE
PROCESSOR

OUTSIDE
PROCESSOR

Figure 5-6. Purpose of the Program Counter

5-6 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

9900 ARCHITECTURE

11111iir 	

STATUS REGISTER (ST)

The purpose of the status register is to store the general arithmetic and logic conditions
that result from the execution of each instruction. This information lets the programmer
know if the last operation caused a result equal to or greater than some reference
number (often zero). It includes the information regarding the sign of the result (was it a
negative or a positive number), the parity of the result (an odd or even number of one
hits), and if a carry or overflow occurred (indicating that the 16 bit word length was
insufficient to hold the result). The status register also contains a 4 bit code known as the
interrupt mask which defines which of 16 hardware subsystem interrupt signals will be
recognized and responded to by the processor. The information contained in the status
register is defined in Figure 5- 7.

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

LGT AGT E0

C OV OP 1 X

I 	I 	I
Interrupt

Mask

Status
Register

Bit

	

0 	LGT — Logical Greater Than — set in a comparison of an unsigned number with a
smaller unsigned number.

	

1 	AGT — Arthmetic Greater Than — set when one signed number is compared with
another that is less positive (nearer to —32,768).

	

2 	EQ — Equal — set when the two words or two bytes being compared are equal.

	

3 	C 	— Carry — set by carry out of most significant bit of a word or byte in a shift or
arithmetic operation.

	

4 	OV — Overflow — set when the result of an arthmetic operation is too large or too
small to be correctly represented in 2's complement form. OV is set in
addition if the most significant bit of the two operands are equal and the
most significant bit of the sum is different from the destination operand
most significant bit. OV is set in subtraction if the most significant bits of
the operands are not equal and the most significant bit of the result is
different from the most significant bit of the destination operand. In single
operand instructions affecting OV, the OV is set if the most significant bit
of the operand is changed by the instruction.

	

S 	OP — Odd Parity — set when there is an odd number of bits set to one in the
result.

	

6 	X 	— Extended Operation — set when the PC and WP registers have been to set
to values of the transfer vector words during the execution of an extended
operation.

	

7-11 	 — Reserved for special Model 990/10 computer applications.

	

12-15 	 — Interrupt Mask — All interrupts of level equal to or less than mask value are
enabled.

Figure 5-7. 77111S9900 Status Register Contents

5.

9900 FAMILY SYSTEMS DESIGN 	 5-7

9900 ARCHITECTURE
	

Software Design:
Programming Methods
and Techniques

WORKSPACE POINTER (WP)

This register addresses the first word in a group of 16 consecutive memory words called
a workspace as illustrated in Figure 5-8. These workspace words are called workspace
registers and are treated by the processor as if they were registers on the processor chip.
These workspace registers can be used as accumulators for arithmetic operations or for
storage of often used data. When the workspace register contains the data used by the
instruction, the T. or Td fields in the instruction format (see Figure 5-4) are 00. This
way of locating instruction operands is an addressing mode called workspace register
addressing. The workspace register can also be used to store the address of the data to be
used instead of storing the data itself. In this case the T s or Td fields of the instruction
code or format will be 01. This type of addressing (method of data location) is known as
register indirect addressing. Workspace registers 1 through 15 can also be used to store
the base address to which an offset will be added to determine a data address. This type
of addressing is called indexed addressing and the T s or Td fields for this type of
addressing will be a 10.

Some of the workspace registers are reserved for specific tasks as shown in Figure 5-8. If
a certain type of subroutine branch called a branch and link (BL) is performed, register
11 is used to save the contents of the program counter at the time of the branch. In
another type of subroutine branch, the branch and link workspace (BLWP) instruction,
registers 13, 14, and 15, are used to save the values of WP, PC, and ST registers,
respectively, that were in the processor at the time the branch instruction occurred.
These registers then allow the programmer to return to the situation or program context
that existed prior to the branch. Register 12 is used to form the address of certain input
and output bits that make up part of the communications register unit (CRU) subsystem.

MEMORY

ADDRESS 	 REGISTER

I REGISTER USE

WORKSPACE POINTER 	VVP + 00 0 	 OPTIONAL SHIFT
YYY

WP + 02 COUNT

WP + 04 2

WP + 06 3

WP + 08 4

WP + OA 5

WP + OC 6

WP + OE 7 DATA

WP + 10
INDEX

OR 8
WP + 12 9 ADDRESSES 	

CAPABILITY

WP + 14 10

VVP + 16 11 BL RETURN ADDRESS

WP + 18 12 CRU BASE ADDRESS

WP + 1A 13 SAVED WP

WP + 1C 14 	SAVED PC

WP + 1E 15 — SAVED ST

Figure 5-8. 9900 Workspace Structure

5-8 	 9900 FAMILY SYSTEMS DESIGN

CURRENT
PROGRAM
SEGMENT

BEING
EXECUTED

t CURRENT
WORKSPACE
BEING USED

PC

SUBPROGRAM

WP

ST

WORKSPACE

Software Design:
	

9900 ARCHITECTURE
Programming Methods
and Techniques

74111111k

The relationships between the workspace registers and the instruction operations must
be understood by, the programmer to effectively utilize the 9900. Much of the
addressing of data involves the use of workspace registers and branch and input/output
instructions must use the dedicated registers 11 through 15. The use of the workspace in
performing the basic program functions offered by the 9900 will be covered in detail
throughout this chapter.

PROGRAM ENVIRONMENT OR CONTEXT

The contents of the three processor registers (PC, WP, and ST) completely define the
status of the system program at any given time. As illustrated in Figure 5-9, the program
counter keeps track of that part of the system program currently being executed by
specifying the current instruction location. The status register keeps track of the logical
and arithmetic conditions that result from the execution of each instruction. The
workspace pointer keeps track of the location in memory of the sixteen general purpose
workspace registers currently being used by the program. The contents of the processor
and workspace registers define the current program environment or context of the
system. A change in the contents of these registers will change the environment to a new
part of program memory and a new workspace area. Thus, the system will be switched to
a new environment or program context by such a change. Similarly, by restoring the
contents of PC, WP, and ST to original values, the program environment will be
switched back to the original context and continue executing in the original program
environment.

MEMORY

Figure 5-9. Program Context

9900 FAMILY SYSTEMS DESIGN 5-9

MEMORY ORGANIZATION Software Design:
Programming Methods
and Techniques

MEMORY ORGANIZATION

The 9900 system memory must provide storage locations for the system program and
subprograms and storage for system data. Since the physical devices used for storing
instructions are often a different type of memory device from those used to store data,
the program is usually stored in consecutive blocks of memory separate from the blocks
of data. This is illustrated in Figure 5-10. Also shown in Figure 5-10 are groups of
memory locations that must be reserved for program and workspace addresses used by
certain subprograms. Thus, the memory is subdivided into three types of storage of
storage locations: program memory, data memory, and reserved or dedicated memory.

ADDRESS

00001a

MEMORY

PROCESSOR INTERRUPT
REGISTERS TRANSFER

VECTORS
003E16 RESERVED

MEMORY
PROGRAM
COUNTER

EXTENDED
OPERATION

0040,
LOCATIONS

TRANSFER

007E,
VECTORS

STATUS
REGISTER 0080, INSTRUCTIONS PROGRAM

OF STORAGE
PROGRAM
MODULE 1 ROM

WORKSPACE
POINTER

PROGRAM
MODULE 2

WORKSPACE
1

WORKSPACE
2

RAM

DATA GROUP

DATA GROUP
2

WORKSPACE
3

FFECIa RESERVED LOAD
TRANSFER MEMORY

FEFEI, VECTOR LOCATION

Figure 5-10. 9900 Memory Organization

5-10 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

MEMORY ORGANIZATION

,41Uft,

1111111■■11■11.

RAM/ROM PARTITIONING

The program storage should be non-volatile so that the system program is not lost when
the system power is turned off. Further, it is often desirable for the program memory to
be a read-only memory or ROM. High volume read-only memory devices are mask
programmable by the manufacturer. Alternatively, the program storage can be placed in
a programmable read only memory (PROM). These devices may be economically
programmed in smaller quantities. Programming may be performed by the user or by
the distributor of the devices. Since both PROM and ROM devices provide word
storage in consecutive addresses and the processor executes programs by going through
instructions in sequence, the instructions that comprise a given subprogram should be
placed in consecutive addresses in a block of memory words called a program module. It
is not necessary that all program modules be adjacent to each other in memory, though
certainly it is reasonable to do so.

System data storage, excluding input/output registers, provide storage for data being
processed by the system program. These storage locations are usually located in
consecutive blocks of memory. Since the data memory must provide both read and write
capability, it is often called read-write memory. A more common terminology is random
access memory or RAM, though this is somewhat misleading, since the program
memory in ROM may also be randomly accessed.

The range of addresses that are assigned to the RAM storage locations and those that are
assigned to the ROM locations are somewhat arbitrary. The reserved locations are the
first locations in program memory, so that part of the ROM addresses are these reserved
location areas. Often hardware considerations such as the simplification of the address
decoding circuitry may decide the range of addresses that are used for each type of
memory.

RESERVED MEMORY

The program modules, workspaces, and general data storage can generally be placed
anywhere in memory, as long as the following reserved locations are preserved:

1) The first 32 words of memory (addresses 0 through 3E 16) are reserved for interrupt

transfer vectors.

2) The next 32 words of memory (addresses 40, 6 through 7E16) are reserved for
extended operation transfer vectors.

3) The last two words of memory (addresses FFFC 16 and FFFF16) are reserved for a load
or reset transfer vector.

These transfer vectors provide storage for a value to be placed in the workspace pointer
and a value to be placed in the program counter in order to switch the program context
from its current environment to a subprogram and new workspace. This new
subprogram and workspace context is used to respond to a hardware interrupt signal, a
hardware reset signal, or an instruction called an extended operation (XOP).

9900 FAMILY SYSTEMS DESIGN 	 5 - 11

WORKSPACE UTILIZATION Software Design:
Programming Methods
and Techniques

WORKSPACE UTILIZATION

THE WORKSPACE CONCEPT AND USES

The advanced memory-to-memory architecture of the 9900 affords multiple register files
in main memory for efficient data manipulation and flexible subroutine linkage. The
usage of the workspace must follow certain constraints for optimum performance. Each
workspace is a contiguous block of 16 words in main memory. All 16 general purpose
registers are available to the programmer for use in any of four ways:

1) Operand Registers — to contain data for arithmetic and logical operations.
2)Accumulators — to store intermediate results of arithmetic operations.
3)ilddress Registers — to specify memory location of operands.
4) Index Registers — to provide an offset from a base address to define an operand

location.

The workspace pointer in the processor contains the address of workspace register 0.
The address of any workspace register R is:

Memory Address of Register R = (WP) + 2R
where (WP) means the contents of the workspace pointer.

When a workspace register is specified as an operand in an instruction, (workspace
register addressing mode) the workspace register contains binary data for use by the
instruction. As an example, consider the addition of the data in register 5 to the data in
register 6. The instruction format is:

A 	5,6

with address calculations of:

(WP) + 2x5
REGISTER 5

OPERAND

REGISTER 6

ACCUMULATOR

(PC) — — — 	ADD INSTRUCTION

I (WP) + 2x6

which is interpreted as follows:
1) The contents of the program counter addresses the instruction in ROM.
2) The instruction indicates workspace register addressing causing the calculation of the

workspace addresses to locate the data to be used by the instruction (contained in
registers 5 and 6) in RAM.

5-12 0900 FAMILY SYSTFM's DESIGN

Software Design:
Programming Methods
and Techniques

WORKSPACE UTILIZATION

The resulting hardware operation with the data thus located is:

REGISTER 5

0

REGISTER 6 (ACCUMULATOR)

REGISTER 6

In this example, register 5 is functioning as an operand and register 6 is functioning as an
accumulator. The difference between an operand and an accumulator register is that
operands remain unchanged by an operation, while accumulators assume new values, the
result of the operations.

The contents of a workspace register may be the address of an operand or an
accumulator in main memory. Address registers are accessed through workspace register
indirect addressing, with or without autoincrementing. If autoincrementing is not used,
the content of the workspace register (the address of the data) is not changed by the
operation. If autoincrementing is used, the address contained in the workspace register is
incremented by one for byte operations and by two for word operations. An example of
an addition instruction in which both the operand and the accumulator are specified by
register indirect addressing is:

A 	*5,*6

with the address computations:

REGISTER 5

- - ►

- - ►

(PC) - - 	ADD INSTRUCTION
(WP) _I 2x5_41 OPERAND

ADDRESS
OPERAND

REGISTER 6

MEMORY
LOCATION

(WP) + 2x6 ACCUMULATOR
ADDRESS

ACCUMULATOR

MEMORY
LOCATION

with the resulting hardware operation:

REGISTER 5

OPERAND ADDRESS

REGISTER 6

OPERAND

ACCUMULATOR

ACCUMULATOR
ADDRESS

ACCUMULATOR

L

The contents of the address registers are not changed in execution since
autoincrementing is not used.

5 4

9900 FAMILY SYSTEMS DESIGN 5-13

- -"-- -I - l' --
 OPERAND IN MEMORY

V
1

I

ACCUMULATOR ADDRESS I- -- - -1.1 (WP) + 2x6 - - - i.

REGISTER 6 Iy ACCUMULATOR IN
MEMORY

T
ACCUMULATOR

LOCATION IN MEMORY

WORKSPACE UTILIZATION Software Design:
Programming Methods
and Techniques

Autoincrementing is often used when accessing structured data
add this feature to this example, the following format would be

and data arrays. To
used:

A 	*5 + , *6+

which would result in the same events as described for standard
indirect addressing with the addition of an incrementing by two
address register 5 and 6:

workspace register
of the contents of the

REGISTER 5

(WP) + 2x5 - - - ► 1 OPERAND ADDRESS

	 _J

4

► 5 The addresses are modified (incremented by two) after the operand and accumulator
addressing operations are completed.

When the workspace register is used as an index register, its contents specify an offset
from a base address. The sum of this offset and the base address contained in the
instruction defines the memory location of program data. Workspace registers act as
index registers when the indexed addressing mode is used. The only restriction on the
use of workspace registers as index registers is that register 0 cannot be used as an index
register. An example of using register 5 as an indirect address register for the operand
and register 6 as an index register for addressing the accumulator would be:

A 	*5, BASE (6)

The binary address BASE is the second word of the two word add instruction, with
address calculations as follows:

REGISTER 5

(PC) - - - i. ADD INSTRUCTION

OPERAND
ADDRESS

OPERAND IN MEMORY
(WP) + 2x5

f

(PC) + 2 - - - J. BASE VALUE
V

V 	(WP) + 2x6 1
F- -.-
1

1
L 	

REGISTER 6
ACCUMULATOR
OFFSET INDEX

I
I
I

5-14 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
	

WORKSPACE UTILIZATION
Programming Methods
and Techniques

The operand data is added to the accumulator data and the sum is stored in the
accumulator location.

DEDICATED AREAS OF WORKSPACES
Ate`

Any register of a workspace may be used as a general purpose register (with the
exception of register 0 not being available as an index register). A few of the registers
are used by 9900 hardware in certain ways, and the software designer must observe
these constraints to assure the integrity of stored data and program and hardware
linkages. Figure 5-11 shows the way the workspace is viewed by the hardware.

WP REGISTER

1

ADDRESS

(HEXADECIMAL)

MEMORY

0500

0502

0504

0506

0508

050A

050C

050E

0510

0512

0514

0516

0518

051A

051C

051E

WR 0

WR 1

WR 2

WR 3

WR 4

WR 5

WR 6

WR 7

WR 8

WR 9

WR 10

WR 11

WR 12 C

WR 13 	I)

WR 14

WR 15 F

0 	0 5 	0
SHIFT

COUNT

EFFECTIVE ADDRESS (XOP)
PC CONTENTS (BL)

CRU BASE ADDRESS

WP REGISTER CONTENTS

PC CONTENTS

ST REGISTER CONTENTS

Figure 5-11. Reserved ilreas of 9900 Workspaces

An examination of Figure 5-11 reveals the following areas that may have to be reserved
in a workspace:

Registers 13, 14, and 15 — Context Switches
/k

These three workspace registers are loaded with current values of the workspace
pointer, program counter, and status register with each context switch. A context switch
occurs in response to an interrupt or in executing a BLWP or XOP instruction. When
an RTWP return instruction is executed, the processor restores these values to the
processor registers from the last three workspace registers. To insure that this return
linkage is not destroyed, the programmer must insure that subprogram operations or
subsequent context switches do not alter the contents of registers 13, 14, or 15.

54

9900 FAMILY SYSTEMS DESIGN 	 5-15

WORKSPACE UTILIZATION Software Design:
Programming Methods
and Techniques

► 5

Register 0 — Shift Instruction

Bits 12 through 15 of register 0 may specify a bit count for shift instructions. The 9900
shift instructions have the format:

OPCODE 	R, SCNT

where the OPCODE is one of the shift instruction mnemonics SLA, SRC, SRL, or
SRA, R is the operand register, and SCNT specifies the number of bit position to be
shifted. When SCNT is zero, bits 12 through 15 of register 0 specifies the shift count. If
both SCNT and bits 12 through 15 of register 0 are zero, a 16 bit shift will occur.

Register 11 — XOP and BL Instructions

Register 11 is used to save address information in extended operation instructions (XOP)
and Branch and Link subroutine jump (BL) instructions. The BL instruction provides a
means of subroutine linkage without the overhead of a context switch. Previous contents
of register 11 are replaced with the program counter contents when a BL occurs. Return
to the calling procedure is accomplished with the RT pseudo-instruction or by an
indirect branch B *11. No critical data should be stored in register 11 if a BL
instruction is to be executed.

In the case of the extended operation instruction, an address is passed to register 11
during the XOP context switch. For example:

XOP VAR, OPNUM

OPNUM is the XOP number and locates the XOP transfer vector in main memory
through the formula:

Transfer Vector Address = 40, 6 + 4 X OPNUM

The effective address of the source operand VAR is placed into register 11 of the XOP
workspace. Even if VAR is not provided, register 11 contents will be altered by
executing an XOP instruction.

Register 12 — CRU Bit Addressing

The 9900 communications register unit (CRU) is a direct command-driven I/O
interface. The five CRU instructions (SBO, SBZ, TB, LDCR, and STCR) all depend on
the presence of a CRU hardware base address in bits 3 through 14 of workspace
register 12. None of these instructions alter the content of register 12.

5-16 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
	

WORKSPACE UTILIZATION
Programming Methods
and Techniques

WORKSPACE LOCATION

Workspaces may be located anywhere in main memory. In practice, 66 words of
memory are reserved to implement necessary hardware functions (transfer vectors).
Workspaces and data may be stored in any other memory area, known as general
memory. The memory locations reserved for 9900 transfer vectors for interrupts and
extended operation instructions are memory addresses 0000 16 through 007E16 . The last
two words of memory (addresses FFFC„ and FFFE„) are reserved for a load function
transfer vector, so the last data or instruction word can occur at address FFFA, G •

Within general addresses 0080 16 through FFFA,,, workspaces can be independent, or
used in common by different program segments or subprograms. To reduce memory
requirements of a software system, routines can share workspaces. The effect of a BL
call to a subroutine is illustrated in Figure 5-12. The program counter is changed to
fetch the instructions from the subroutine, but the workspace pointer is not changed,
which results in a workspace shared by the called and the calling procedures.

GENERAL
MEMORY

9900

51

BEFORE
CALL

PROGRAM

PROGRAM COUNTER

AFTER
CALL -

At'

•
•
•
•
•

WORKSPACE POINTER

SUBROUTINE

STATUS REGISTER

•
•
•
•
•

WORKSPACE

Figure 5-12. Shared Workspace Subroutine Call

9900 FAMILY SYSTEMS DESIGN
	

5-17

PROGRAM COUNTER

WORKSPACE POINTER

STATUS REGISTER

BEFORE
CONTEXT
SWITCH

AFTER
• CONTEXT

• SWITCH

PROGRAM A

•

•

WORKSPACE A

PROGRAM B

WORKSPACE B

WORKSPACE UTILIZATION
	

Software Design:
Programming Methods
and Techniques

When a routine requires the use of a large number of workspace registers, an
independent workspace will be needed for that routine. In some cases, independent

workspaces are used for routines when little common data is needed. When workspaces
have no common memory words, parameter or data passing can be done by using the old
program counter and workspace pointer. For example, in a context switch, which saves
the old workspace pointer in the new workspace register 13, any of the old workspace
registers can be accessed by referring to the contents of the new register 13. The
contents of register 13 addresses the old workspace register 0. The use of register 13 as
an index register allows the programmer access to any other of the old workspace
registers. Thus, to access old register 0 as an operand in an add instruction, the following
instruction would be used:

A 	*13,7

This instruction specifies the contents of old register 0 (addressed by the contents of new
register 13) as an operand and new register 7 as an accumulator. To address old register
10, the following indexed addressing approach could be used:

A 	@20(13),7

This instruction adds 20 to the contents of new register 13 to generate the address of old
workspace register 10, which is then used as an operand in the add operation. The effect
of a context switch in providing an independent workspace is illustrated in Figure 5-13.

GENERAL
MEMORY 9900

RO

R15

RO

R15

Figure 5-13. Independent Workspaces

5-18 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

SUBROUTINE TECHNIQUES

Software systems are implemented with a set of subprograms, usually subroutines.
Subroutines offer several advantages over incorporation of all code into a large main
program:

1) Repetition of code is reduced. Modular coding of repeated processes saves memory
requirements of software.

2) Documentation is simplified. The clarity of complex programs is enhanced by
breaking the overall task into manageable subsystems.

3) Debugging time is reduced. A complicated system can be made functional one module
at a time.

These advantages point out the importance of understanding the characteristics of 9900
subroutine calls. The most important characteristics are the way the subroutine linkages
back to the calling program are handled and the way parameters are passed between the
calling program and the subroutine. The linkage procedures for the types of subroutine
calls are discussed first.

TYPES OF SUBROUTINES

Three types of subroutine calls are used with the 9900. The following table summarizes
4.0„, the calls and returns for each type:

Call to Subroutine Return to Calling Procedure

Mnemonic Meaning Mnemonic Meaning
BL Branch & Link RT or Return

B *11
BLWP Branch & Link RTWP Return with

Workspace Pointer Workspace Pointer
XOP Extended Operation RTWP Return with

Workspace Pointer

Si

9900 FAMILY SYSTEMS DESIGN 	 5-19

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

The branch and link instruction is a fast transfer to a routine that shares the workspace
with the calling procedure. Execution of a BL causes the contents of the program
counter to be stored in workspace register 11. The new program counter value is the
single argument of the BL instruction. An example of a typical BL instruction is:

PT 	BL 	@SUB1

SUB1 is the label of the first instruction of the subroutine being called. After execution
of the BL instruction, program flow will continue at the symbolic address SUB1. Upon
execution of the BL instruction, the update value of the program counter (address
PT + 4) is stored in workspace 11 (PT is the symbolic address of the BL instruction).
This process of a shared workspace subroutine call is illustrated in Figure 5-14. Return to
the calling procedure is through the RT pseudo-instruction which is equivalent to the
indirect branch;

B 	*11

Since the BL instruction always reloads Workspace register 11, special steps must be
taken to insure that the critical return address is not overstored. Generally, register 11
should not be used to save a variable whose value will be needed after a BL instruction
occurs. Similarly, after a BL instruction has been executed (and before a RT instruction
has been executed), register 11 cannot be used by any instruction that would change the
contents of register 11, such as using register 11 as an accumulator or executing another
BL instruction. If multiple levels of BL calls are to be used, a push-down stack must be
established to save intermediate return linkage. Techniques for setting up a stack are
discussed under the topics of multiple level subroutine calls and reentrancy.

GENERAL
MEMORY

9900

MAIN
PROGRAM

PROGRAM COUNTER

WORKSPACE POINTER

SUBROUTINE

STATUS REGISTER

A

REGISTER 0

WORKSPACE

REGISTER 11

OLD PC VALUE

	 BEFORE BL

- - - AFTER BL

REGISTER 15

Figure 5-14. Effects of BL Instruction

5-20 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

The branch and load workspace pointer (BLWP) is a subroutine call that initiates a
context switch. When a context switch occurs, the programming environment is changed
to allow the subroutine to use a new register file (workspace). BLWP has the following
effect as illustrated in Figure 5-15:

1) A transfer vector located by the argument of the BLWP instruction supplies a new
workspace pointer value and program counter value.

2) The old values of WP, PC, and ST are saved in registers 13, 14, and 15, respectively,
of the new workspace.

3) Execution proceeds in the subroutine using the new PC value.

The 9900 format for a typical BLWP using Symbolic addressing is:
PCL BLWP @TVAL

where PCL is an arbitrary label and the symbolic address of the location of the BLWP
instruction in general memory. TVAL is the symbolic address of the transfer vector,
which in turn provides new values for the workspace pointer and the program counter.
The contents of workspace register 13 through 15 of the new workspace are reserved
for storage of the return linkage. Since the BLWP can store return linkage in an
independent workspace, multiple subroutine levels may be implemented without a

m. return stack as long as no two subroutines use the same workspace (transfer vector).
Although the example in Figure 5-15 uses symbolic addressing mode, other addressing
modes can be used.

,411•11,

9900 FAMILY SYSTEMS DESIGN 	 5-21

TVAL
TRANSFER

VECTOR
TVAL 12

MAIN

PROGRAM

SUB1

SUBROUTINE

PROGRAM

WORKSPACE
	RO

FOR MAIN
PROGRAM

WORKSPACE
FOR SUB-
ROUTINE

RO

R13

R14

R15

GENERAL

MEMORY

NEW WP VALUE

NEW PC VALUE
(SUBI)

BLWP @TVAL

RTWP

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

KEY.

BEFORE BLWP

- - - AFTER BLWP

9900

PROGRAM COUNTER

\

STATUS REGISTER 	- -1

WORKSPACE POINTER

/

z

/

z 	 I
I

.4(I 	II
OLD WP

-/

OLD PC

OLD ST

Figure 5-15. Execution of BLWP Instruction (BLWP (TVIL)

5-22 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

Extended operation instructions (XOP) offer a means of expanding the 9900 instruction
set. The implementation of an XOP is similar to the execution of a BLWP; the
instructions differ only in the location of the transfer vector and in the parameter passing
feature offered by the XOP. The execution of an XOP is illustrated in Figure 5-16 and
consists of the following events:

1) Identify the XOP number (N) and locate a transfer vector in memory at the address
0040, 6 + 4 X N.

2) Use the transfer vector word one as the new workspace pointer value and the second
word of the vector as the new program counter value.

3) Save the old contents of WP, PC, and ST in new workspace registers 13, 14, and 15,
respectively.

4) Store the effective address of the source operand in new workspace register 11.

Thus, XOP initiates a context switch with the added benefit of direct passing of a parameter
address to the new workspace (register 11). By using an assembler directive DXOP,
the user can define a mnemonic string to present one of the 16 XOP transfer
vectors. This mnemonic can then be used in the program as a user defined instruction,
improving the clarity of the program coding. For example, to define XOP 15 as the
mnemonic SAMPL, the following directive can be used:

DXOP SAMPL, 15

Then, instead of using the standard XOP entry in the program:
XOP @PARAM, 15

The programmer can insert the newly defined mnemonic:
SAMPL @PARAM

The XOP call is a software trap to a user-defined routine. It functions as though the
routine were a single instruction added to the 9900 set of operation codes, hence the
name "extended operation."

5

9900 FAMILY SYSTEMS DESIGN 	 5-23

RESERVED

MEMORY
0000

0040

40 + 4 x 15 = 007C

007E

GENERAL

MEMORY

MAIN

PROGRAM

XOP 15

SUBROUTINE

MAIN
PROGRAM

WORKSPACE

XOP 15

WORKSPACE

► 5

RO

R11

R13

R14

R15

PARAM

1
RO

R15

SUB2

XOP @PARAM, 15

RTVVP

SOURCE OPERAND

ADDRESS

STORES SOURCE ADDRESS

NEW WP VALUE

NEW PC VALUE

(SUB2)

KEY

	 BEFORE XOP

- - AFTER XOP

9900

PROGRAM COUNTER

STATUS REGISTER

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

....... \ ---\--- __
\ 	--..

\ 	 --- ---
\
\

...--
,-

\ ...--
-,

....." 	\

..,

..."
5,

...--

A'

WORKSPACE POINTER

OLD WP
.1- 	

.4- 	 OLD PC

.4- 	 OLD ST

— —I

-I
1
1
I

i 	l

I
1

I I
1
I
i

I
I
I 	

I
I
1
1
I
I

1
1 	I 	I
I 	I 	I

I 	I
I 	I 	I
f 	1 	1

1 _ t
I

Figure 5-16. Execution of XOP Instruction (XOP @PitRilM, 15)

5-24 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

PARAMETER PASSING

Most subroutines require access to data generated by the calling procedure. Different
subroutine call types mandate different parameter passing techniques. All three types of

a subroutine calls, BL, BLWP, and XOP, transfer the old contents of the program counter to
the called procedure. This return linkage provides a powerful tool for parameter
passing as illustrated in Figure 5-17. A parameter list can be assembled in a block of
words following the call and accessed through the old program counter by workspace
register indirect autoincrement addressing. Regardless of the number of parameters used
in any given call, the program counter must be incremented past the whole list, so that
the return will be to the next instruction in the calling program. A subroutine call using
only one of two passed parameters is shown in the following example:

0200 BL @ANG Call Subroutine ANG
0202 FLAG1 DATA > 0 Parameter 1 is 000016
0204 FLAG2 DATA > 1 Parameter 2 is 000116

0600 ANG MOV *11 + ,3 Move Parameter 1 into R3
0602 C 3,2 Compare Parameter 1 to contents of R2
0604 JEQ FIRSTEQ Try next test if equal
0606 INCT R11 Move Return PC past parameter 2
0608 B *11 Return
060A FIRSTEQ

The subroutine ANG checks the first parameter against the contents of R2. If an
inequality is found, the branch to continue the routine at FIRSTEQ is not taken. The
move instruction which loaded parameter 1 into the workspace increments the program
counter in R11 by 2 so that register 11 now points to parameter 2. The INCT
instruction is required to increment the program counter value in R11 past parameter 2
to point to the next instruction in the calling program.

When parameters are passed in this way using the program counter, good programming
practice dictates that they be constants or addresses only and not variables. Variable
quantities should be stored in memory external to program code. To 'nest' variable data
in program code causes in-line code modification, which would produce code that would
be inoperative if stored in ROM.

The example above dealt with the BL subroutine call, though the same technique can
be applied to BLWP or XOP calls. These calls store the program counter in workspace
register 14, so the indirect address register must be 14 instead of 11.

54

9900 FAMILY SYSTEMS DESIGN 	 5-25

GENERAL

MEMORY

— AUFOINCREMENT INDIRECT,'
ADDRESS

SUBROUTINE

WORKSPACE

OLD PC

STORED IN SUBPROGRAM

WORKSPACE: R11 FOR BL CALL:

R14 FOR BLWP OR XOP OR INTERRUPT
OLD PC VALUE

9900

MAIN

PROGRAM

SUBROUTINE
PROGRAM

PROGRAM COUNTER

WORKSPACE POINTER

EXECUTION OF '11 + (BL CALL)
or '14 + (CONTEXT SWITCH)

SUBROUTINE CALL

PARAMETER 1

PARAMETER 2

NEXT INSTRUCTION

z

FIRST INSTRUCTION

RO

ADDRESS OF NEXT PARAMETER

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

KEY

	 BEFORE CALL

— — — — AFTER CALL

Figure 5-17. Parameter Passing Using Old Program Counter Value.

Another method of parameter passing is used when a context switch occurs. Both BLWP

and XOP cause the old contents of the workspace pointer to be stored in the new
workspace register 13. By using register 13 in the called procedure, access is gained to
parameters in the old workspace as illustrated in Figure 5-18. Direct access to old
register 0 is provided, but to use other parts of the old workspace, indexed addressing
provides the most convenient access to old registers 1 through 15 without changing the
old workspace pointer value. For example, to move the contents of old workspace
register 2 to new workspace register 5, the following instruction can be used:

MOV 	®R2*2(13),R5

which causes the address of the operand to be the contents of register 13 plus 4, which is
the address of old workspace register 2. Similarly, to move the contents of old workspace
register 7 to old workspace register 6:

MOV 	®R7*2(13), ®R6*2(13)

5-26 	 9900 FAMILY SYSTEMS DESIGN

KEY:

	 BEFORE CALL

— — — AFTER CALL

— INDEXED ADDRESSING

9900

PROGRAM COUNTER

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

SUBROUTINE

GENERAL MEMORY

SUBROUTINE CALL

NEXT INSTRUCTION

FIRST INSTRUCTION

OLD WP VALUE

WORKSPACE POINTER

NIL.... 	/
"■.,„.../.

/)OLD WP) + 6 = ADDRESS OF OLD R3
/ 	GENERATED BY INDEXED ADDRESSING:

.40(0 	@6(13)

2 x (OLD REGISTER NUMBER)

= 2x3 TO ACCESS OLD R3

- OLD WP VALUE-

MAIN

PROGRAM

RO

R1

MAIN PROGRAM
	

R2
WORKSPACE

R3

RO

SUBROUTINE
WORKSPACE

R13

Figure 5-18. Parameter Passing through Old Workspace Pointer

A final type of parameter passing applies only to XOP context switches. The single
argument of an XOP call specifies the effective address of a source operand. This form
of parameter passing avoids the risk of changing the old PC and WP. The overhead of
changing the WP and PC pointers is also avoided to increase execution speed. As an
example, if XOP 9 has been defined as FADD by a DXOP directive, the call:

FADD @LIST

causes the address stored at location LIST to be placed in register 11 of the subroutine
workspace. Then, workspace register indirect addressing can access the parameter. For
example, if in the FADD subroutine it is desired that the parameter be incremented by
two, the following instruction would be used.

INCT *11

The use of the parameter through its address in register 11 is straightforward and
doesn't interfere with the return linkage. This type of parameter passing has already
been illustrated in Figure 5-16.

9900 FAMILY SYSTEMS DESIGN 	 5-27

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

MULTIPLE LEVEL SHARED WORKSPACE SUBROUTINES

Since the BL instruction always reloads the workspace register 11, special steps must be

taken to insure that the information in register 11 is not overstored. In the case of
multiple levels of BL called subroutines, routines which call other routines before

returning to the main program, a pushdown stack should be established to save
intermediate return linkage. To create a return linkage stack for multiple levels of
subroutines which share a workspace, the following procedure is employed:
1) Allocate one workspace register to the stack pointer function.
2) For each subroutine, "push" the contents of workspace register 11 before the next

call, and "pop" the stack to restore the register 11 contents after each call is
complete.

An example of a stack manipulation code following this procedure to push and pop
return linkage is as follows, with register 5 acting as a stack pointer:

11• 5

Subroutine code before next level call

DECT 	5 	Decrement Stack Pointer

MOV 	11, *5 	Load return PC onto Stack

BL 	@SUBNXT 	Call next level of subroutine

MOV 	*5+, 11
	

After return, restore current
return address and restore
stack pointer

Push Operation

Pop Operation

This code allows the current subroutine to call subroutine SUBNXT without destroying
the current subroutine's return linkage. The main program employs a standard BL call,
and the lowest level routine would not use the stack, since its register 11 would not be
replaced with a subsequent BL call. An example of this stack operation procedure with 3
nested subroutines is illustrated in Figure 5-19.

SHARED WORKSPACE MAPPING

Software systems for small computers must efficiently utilize available memory. This
section presents an organized technique for sharing workspaces between subroutines to
reduce system memory requirements.

5-28 9900 FAMILY SYSTEMS DESIGN

PUStI R11
10 STACK

10 SAVE
LINK ?

BL

(a)SUB3

POP STACK
TO RESTORE

LINK K 10

R11

RET
RET

--N.' SU B1

LII‘IY. 1

RUSH R11

TO STACK
TO SAVE

LINK I

BL

(a)SUB2

POP STACK

10 RESTORE
LINK I TO

H11

RET

-a- SU B2

SUB3

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

CONTROL
PROGRAM

Figure 5-19. Stack Operations in Nested Subroutines.

The first step in system development is to write a main program and its associated
subroutines with totally independent workspaces. Avoidance of shared workspaces at the
start can prevent the undesirable aspect of destruction of critical data, including return
linkage.

After independent software is written, the programmer begins the process of identifying
gab, potential shared workspaces. First, the relationship between called and calling

procedures is summarized graphically as shown in Figure 5-20. This graph represents the
fact that procedure A can call either procedure B or C. Procedure B may call D or E,
while E can call D or G, and so on throughout the graph. Having identified routine
relationships, Figure 5-20 can be changed to a form that reflects subroutine levels. All
procedures at the same level are called from a higher level and may call routines at a
lower level.

9900 FANI I Ll SYSTEMS DESIGN 	 5-29

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

Thus, Figure 5-20 would be changed to the form illustrated in Figure 5-21. This
information is equivalent to the information contained in Figure 5-20, but it clarifies the
relationship between procedures. The routines on a particular level can never call
another routine at the same or at a higher level. Thus, all routines at the same level can
share a common workspace since return linkage will not be overstored by a subsequent
call. Therefore, for the example described in Figures 5-20 and 5-21, five independent
workspaces will suffice for a software system of eight procedures, saving 3 workspaces or
48 words of memory. By employing this simple technique, the software designer can
write efficient code with an assurance of the integrety of return linkage.

Figure .5-20. Graphical Representation of Interrelation of Calls

RE-ENTRANT PROGRAMMING

Re-entrant programming is a technique that allows one set of program code to be
executed on multiple data sets concurrently. To be re-entrant, program code must have
the following characteristics:
1) All data contained in a re-entrant routine must be common to all procedures which

call it, and must be read-only to all using procedures.
2) All data unique to calling routines must be stored and used in a workspace unique to

the calling procedure.
3) Re-entrant code must not alter data or instructions within its code during execution.

Re-entrant coding is a general programming technique that has many applications.
Device service routines which control the operations of several similar units should be
re-entrant. By passing a CRU base address with other unique data to a re-entrant service
subprogram, any one of a group of calling procedures can access such a multi-purpose
I/O routine, thereby saving system memory requirements. This is a case in which one
routine is used for several applications at random time intervals. A re-entrant subroutine
is so loosely coupled to its calling procedure that a re-entrant routine can be interrupted
during execution, used on different data, and return to complete the original process
without losing data integrity. Since re-entrant code is immune to problems with data
resulting from interrupts, it finds application in interrupt service routines, commonly
called procedures, in a multiprogramming environment such as assemblers or in real-
time control applications.

5 - 30 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

SUBROUTINE TECHNIQUES

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Figure 5-21. Levels of Subroutine Calls

Figure 5-22 illustrates a program flow in which subroutine A must be re-entrant. The
alternative to writing subroutine A in re-entrant code is to make two copies of A, one for
each time A can be executed concurrently. The re-entrant approach is more efficient in
memory usage than is the multiple copy approach. In this program flow, the main
program calls its first level subroutine which in turn calls subroutine A as a second level
subroutine. During execution of routine A, an interrupt occurs, which in this example
the interrupt handler program sequence calls several routines, including routine A. If A Am,
employs re-entrant programming, the same words of code can implement routine A for
both parts of the program flow.

MAIN
PROGRAM

PROGRAM

SUBROUTINES
INTERRUPT
HANDLER

- -
INTERRUPT

- - J

RETURN

Figure 5-22. Interrupt Requiring Re-entrant Programming

As an example of re-entrant coding, consider the problem of forming a starting and an
ending address for a block of data to be operated on by a subroutine. Register 1 is to
hold the starting address, register 2 is to hold the ending address, and register 3 is to
hold the current data address within the block.

9900 FAMILY SYSTEMS DESIGN 	 5-31

SUBROUTINE TECHNIQUES Software Design:
Programming Methods
and Techniques

This structure is in a subroutine that must be re-entrant, i.e., one that can be called
concurrently by two different program segments as illustrated in Figure 5-22. Different
program segments that use this subroutine will probably be dealing with blocks at
different starting addresses and of different sizes. For example, the main program stream
may be operating on a block of 10 words starting at address 1000 166 while the interrupt

handler may have to operate on a 32 word block starting at address 2000 16 . Forming the

starting and ending addresses as follows:

BLKLN EQU 32
LI 	1,> 1000 	Load R1 with starting address

LI 	2,2*BLKLN Load R2 with 2x (words in block)
A 	1,2 	 Form end address for block (1014 16)

would not result in re-entrant code. This sequence would be correct for the main
program stream but is not correct for the interrupt handler stream. The code can be
made to work for both streams by not placing the load immediates in the subroutine
itself but by placing them in the program stream that calls the subroutine. Then, when
either the main program or the interrupt handler gets ready to call the subroutine, the
starting address and ending address can be established within the workspace for that
environment. The subroutine can then concentrate on performing its manipulations,
without being concerned with the address initialization process. Suppose that this
addressing scheme is used in a subroutine that clears a block of memory words. Figure 5-

23 shows the re-entrant and non-re-entrant forms of this subroutine. The re-entrant
form can be used in the situation of Fiore 5-22 since execution depends on the
workspace being used. The subroutine can be executing with the registers 1 through 3
of the main program when an interrupt occurs. The interrupt handler uses a different
workspace so when it calls the CLEAR subroutine, new starting and ending addresses
are used, without affecting where the subroutine was in the main program execution.
Then, when the subroutine and interrupt handler have been executed and the context is
switched back to the main program, the subroutine will continue executing with the
values in registers 2 and 3 of the main program environment.

This is not true of the non-re-entrant code. By moving the contents of the interrupt

register 1 to the FIN location, the number of blocks to be cleared by the main program
execution CLEAR subroutine could be changed, if the interrupt occurs after the
MOV 1, @FIN instruction. Because the value FIN is unique for each calling
program or computed in the subroutine, the code may not properly be re-entered. That
is, it should not be used when an interrupting procedure may execute the same code.
The re-entrant version could be used by any number of interrupting procedures without
affecting execution results in either the main program or the interrupting program
environments. Entrance to the routine would be performed by executing a
BL CLRLUP.

5- 32 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
	 PROGRAMMING TASKS

Programming Methods
and Techniques

Re-Entrant Coding

MOV 	1,3 	 Set R3 at first address of block

A 	1,2 	 Compute end address and place in R2

COM 	C 	3,2 	 Address past end?

JH 	PRET 	If so, return
CLR 	*3 + 	 Else, clear word and go to next address
JMP 	COM 	Jump to continue clearing

PRET 	B 	*11 	 Return

Non-Re-entrant Coding

CLRLUP MOV 	1,3 	 Set R3 at first address of block

MOV 	1,(r FIN 	Set up first address in FIN

A 	2,@FIN 	Compute final address and store at FIN

COM 	C 	3,(r FIN 	Address past end?

JI I 	PREP 	If so, return
CLR 	*3 + 	 Else, clear word and go to next address

JMP 	COM 	Jump to continue clearing
PERT 	B 	*11 	 Return

Figure 5-23. Subroutine Example of Re-entrant Coding.

PROGRAMMING TASKS

The programming techniques of workspace and subroutine usage, program loops,
macros, and data representation must be applied to the development of programs and
subprograms to perform the basic system functions of state initialization, pattern
recognition, arithmetic, and input/output. Each of these system functions represents a
programming task that involves programming structures peculiar to each function. This
section discusses the basic requirements of the software for each function and presents
some of the programming approaches that are used to meet those requirements.

INITIALIZATION

When the system is first turned on, the first few instructions encountered must initialize
the state of the system to a desired predetermined starting state. The system
initialization procedure is usually started by the RESET or LOAD functions. Similarly,
as the system enters a subprogram or a new program sequence, the state of certain
memory locations must be initialized to a desired starting state. Further, in developing
the software, the transfer vectors and other program constants must be initialized by the
assembly language software. The assembly language directives available for this purpose
include the equate (EQU) and the data (DATA) directives. The application of these
directives to the problem of initializing the reserved memory locations and program
constants are covered in detail under the assembler directive discussion in Chapter 7.

51

9900 FAMILY SYSTEMS DESIGN 	 5-33

PROGRAMMING TASKS
	

Software Design:
Programming Methods
and Techniques

Usually the first part of any program is the initialization of the system. The LWPI
instruction is used to initialize the workspace pointer (WP register) to define the
location of the 16 workspace registers. If the workspace of a program sequence is to be
located at a starting address of 400, 6 , the following instruction will initialize the
workspace pointer to that value:

LWPI > 0400

Under the interrupts discussion the use of the LIMI (load interrupt mask immediate)
instruction to establish which interrupts would be responded to was covered. For
example, if the programmer wants to disable all interrupts above level 7 for a program
segment, the following instruction must be used at the first of the segment:

LIMI 7

Similarly, the load immediate (LI) instruction is used to initialize values in workspace
registers. The LI can be followed by MOV instructions to further initialize other
memory locations. As an example, to initialize register 3 and memory location TEST to
the value O0FF,,, the following instructions can be used:

LI 	3, > ()OFF
MOV 3, @TEST

In some initialization sequences several registers have to be initialized to the same value,
such as zero. For example, if 10 consecutive memory words starting at location 100016
are to be cleared (zeroed) then a program loop is suggested. One possible
implementation of this initialization task would be:

LI 	2,> 1000 	Set R2 to the starting address 100016
LI 	3,> 100A 	Set R3 to the address past the last data location to

be cleared

LOOP CLR 	*2 + 	Clear data, increment the address by two
C 	2,3 	 Is address past the 10th data location

JNE 	LOOP 	If not jump to LOOP to continue clears
else go the next sequence of instructions

In this data initialization program segment, like most program segments, registers must
be initialized to establish program limits, addresses, and other conditions. In this
sequence register 2 was initialized to the starting data address and register 3 was
initialized to indicate the first word address after the 10th data word to be cleared. Had
this loop been implemented with a loop counter, the register acting as a loop counter
would have been initialized to 10.

5-34 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
	

PROGRAMMING TASKS
Programming Methods
and Techniques

Generally, most program initialization tasks can be handled by using a combination of
the techniques presented in this section. The immediate load instructions are the most
commonly used operations in performing the initialization operation, followed by the use
of assembler initialization directives to establish vectors and other data constant

41111b,

initialization.

MASKING AND TESTING

In many cases only certain portions of a word are of interest. The program segment may
be examining or modifying a single bit or a group of bits. The bits that are not involved
in the operation must be masked off so that they will not affect status bits and thus affect
program decisions. There are several ways of approaching this masking and single bit
testing problem.

If a single I/O bit is to be examined or modified, the simplest approach is to use the CRU
single bit instruction SBO, SBZ, or TB to perform the desired operation. This is
possible only if the hardware has been set up to address the desired bit as a CRU bit. If
the bit is not accessible through CRU addressing, one of the selective masking
instructions must be used. The set to ones or zeroes instructions (SOC, SOCB, SZC, and
SZCB) can be used to selectively set or clear bits. The compare ones or zeroes
corresponding instructions (COC and CZC) can be used to test selected bits. Of course
these instructions can be used to test or change single or multiple bits. An alternative
single bit approach is to use the circulate instruction (SRC) to get the desired bit into the
carry status bit for examination or changing.

To see how these non-CRU masking instructions are used, consider the task of
examining the value of bit 12 of the data of workspace register 1. The mask is contained
in location MASK which will contain all zeroes in all bits except for bit 12 which will
contain a one. Thus, location MASK will contain 0008 76 . Then, the instruction:

CZC 	@MASK, 1

will set the equal status bit if bit 12 of R1 contains a zero. The instruction:
COC @MASK, 1

will set the equal status bit if bit 12 of R1 contains a one. In these cases, the JEQ or JNE
instructions can be used to test the equal status bit after the comparison.

Alternatively, the instruction:
SRC 	1,4

will cause bit 12 to be in the carry flip flop. However, this instruction will change the
contents of R1 by moving all bits to the right 4 positions. The JC or JNC instructions
are used to test the bit value in the carry status bit.

54

9900 FAMILY SYSTEMS DESIGN 	 5-35

PROGRAMMING TASKS
	

Software Design:
Programming Methods
and Techniques

To selectively set bit 12 of R1, any of the following instructions could be used:
ORI 	1,> 0008
SOC @MASK,1

To selectively clear bit 12 of R1, either or the following instructions could be used:
ANDI 1,> FFF7

or:
SZC 	@MASK, 1

If groups of bits are to be changed or examined, the above techniques can be used if all
bits are to be ones or zeroes. For example, if bit 13 of register 2 is to be tested, the
following instructions would jump to point P1 in the program if bit 13 of R2 is one:

ANDI 2,> 0004 	Zero all bits but bit 13 of R2; compare to 0

JNE P1 	 If EQ = 0, bit 13 was one and jump to point P1

A more complicated test would be to check bits 13 and 15 of R3. A jump to P2 is to be
made if both of these bits are one. The following instructions would accomplish this test
and program decision:

H5 	DATA 5

COC 	H5,3 	Compare to 5 to see if both bits are one.
JEQ 	P2 	If they are, jump to point P2.

Thus, a combination of masks (ANDI) compares, and conditional jumps can be used to
examine all features of system words and react appropriately.

If a group of bits is to be examined or modified arithmetically, a slightly different
approach may be used. If for example the least four bits of R1 are to be compared to 8,
one approach would be to provide a copy of the R1 contents in R2. Then the first 12 bits
of R2 are zeroed with:

ANDI 2,>000F

5-36 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
	

PROGRAMMING TASKS
Programming Methods
and Techniques

or with: SZC @MASK1,2 where the contents of location MASK1 are FFFO„. Then,
the contents of R2 can be compared to 8. The entire sequence would then be:

MOV 1,2
ANDI 2,> F

	

CI 	2,8
JLT P1

•
• Sequence of instructions
• to handle case where least
• four bits of R1 (and R2) are
• greater than or equal to 8
•

P1 	• 	Sequence of instructions
• to handle case where least
• four bits of R1 (and R2) are

less than 8
This technique is useful in Decimal to Binary or Binary to Decimal number conversion
and in implementing BCD (Binary Coded Decimal) arithmetic.

,41111116,

Of the techniques that can be used in masking and testing, the ANDI, ORI, SOC, and
SZC instructions change the word they operate on. The Compare techniques, CZC and
COC, do not affect the words being operated on but they do affect the status bits. Often,
when part of a word is modified (such as portion of the word is zeroed by an ANDI
instruction) the word must later be reassembled after all bit group operations have been
completed. The programmer should see that such operations are performed on copies of
the word so that further masking operations use the original word. As an example, if a
word is to be broken down into four bit groups (to implement BCD arithmetic), at least
four copies of the word are required or four accumulators must be used. If register 1
contains the master copy, and registers 2 through 5 contain the four bit groups, the
following sequence of instructions would generate the desired four bit groupings in the
four accumulators from the master copy in register 1:

MOV @MASTER,1
MOV 1,2
MOV 1,3
MOV 1,4
MOV 1,5
ANDI 2,> 000F
ANDI 3,> 00F0
ANDI 4,> OF00
ANDI 5,> F000

Move word to be separated into R1
Move a copy of the word into
accumulators R2 through R5

Mask all but least four bits in R2
Mask all but next four bits in R3
Mask all but next four bits in R4
Mask all but most significant four bits in R5

9900 FAMILY SYSTEMS DESIGN 	 5-37

PROGRAMMING TASKS
	

Software Design:
Programming Methods
and Techniques

► 5

With this program sequence, the original word can be broken into bit groups for further
testing and modification. R1 still contains the original word for reference and further
manipulation. However, by using ANDI mask instructions, several memory words are
required to hold intermediate results. This would not have been necessary if compare
(selective bit) instructions had been used. The specific application usually dictates which
approach is to be used.

ARITHMETIC OPERATIONS

Basic arithmetic can be performed with addition and subtraction, though certain
operations such as multi-word arithmetic require the use of shift instructions and
conditional branch instructions such as the jump on carry or jump on greater than.

Multi-Precision Arithmetic

The 9900 arithmetic instructions perform mathematical functions on 16 bit words. For
applications that require a greater numerical accuracy or a larger number (the 16 bit
word can hold a magnitude number from 0 to 65,535), multiple word numbers must be
used. The basic arithmetic instructions must then be used in such a way as to implement
the desired mathematical functions on these multiple word numbers. This section deals
with techniques for treating several words as a single binary value, that is, extended
precision arithmetic.

A 16 bit two's complement word can represent a signed value in the range —32,768 to
+ 32,767. The negate (NEG) and absolute value (ABS) instructions provide fast
conversion between positive and negative 16 bit words. For sign conversion on binary
values represented by.multiple words, special conversion techniques are required. The
process for converting a three word positive value to its negative or two's complement
value is shown in Figure 5-24. The three word number is stored in registers 0, 1, and 2
of the workspace. The complementing procedure is to form the one's complement of the
three word number using the invert (INV) instruction and then to add 1 to the result.
The JNC instructions in the program check to see if a carry is to be propagated from a
less significant word to a more significant word in the process of adding one to the three
word number. If carries occur, the addition is handled by the increment (INC)
instruction. Conversion of a number to its absolute value is accomplished by checking
the sign bit (most significant bit) and executing the negate routine (COMP) on negative
values.

5-38 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
	

PROGRAMMING TASKS
Programming Methods
and Techniques

Memory Structure

Register 0 	 Register 1 Register 2

A,

A2

AO

= A (48 bit number)

Procedure:

1) Form l's complement of A, using the invert (INV) instruction.
2) Convert the

	

	l's complement of A to the two's complement of A by adding 1 to the 	complement of A.
2's complement of A = l's complement of A + 1

Program:

	

COMP INV 	0 	Complement contents of RO

	

INV 	1 	Complement contents of R1

	

NEG 	2 	Negate contents of R2

	

JNC 	EXIT 	If no carry operation is complete, return

	

INC 	1 	If carry, add one to contents of R1

	

JNC 	EXIT 	If no carry operation is complete, return

	

INC 	0 	If carry, add one to contents of RO

EXIT 	RT 	 Return

Figure 5-24. Process to form the Negative of A(— A).

The process of adding or subtracting two multi-word numbers is to perform the
operation on the least significant words, then on the next most significant words with the
previous carry or borrow, and so on until the complete result is formed. Subtraction
could be performed by first using the negate procedure of Figure 5-24 on the value to be
subtracted and then adding this two's complement result to the other number.

Multiple word multiplication can be handled by using the 9900 multiply (MPY)
instruction to provide 32 bit partial products and then adding all partial products to
achieve the final desired product. The procedure is illustrated in Figure 5-25 for
multiplication of one 32 bit number by a second 32 bit number. The multiplication of a
16 bit number by a second 16 bit number is performed by the MPY instruction. Thus,
four applications of the MPY would form the required four partial products. Then, by
adding these products in the correct positions, the 64 bit product is formed. The basic
memory structure used by the example in Figure 5-25 can be understood by looking at
the operation of the MPY instruction. The accumulator or destination operand must be a
workspace register. Then, the product is stored in two successive workspace registers,
the most significant 16 bits in the destination workspace register and the least significant
16 bits in the next workspace register. The source operand which specifies the multiplier
may be specified with any addressing mode, though the example of Figure 5-25 uses
register addressing for this operand. Thus, the instruction:

	

MPY 	1,8

multiples the contents of register 1 by the contents of register 8 and places the 32 bit
product in registers 8 and 9. While the multiplier register 1 contents are unchanged, the
multiplicand register 8 contents are changed to the most significant part of the product.

51

9900 FAMILY SYSTEMS DESIGN 	 5 - 39

PROGRAMMING TASKS Software Design:
Programming Methods
and Techniques

■ 5

Thus, there must be several copies of each multiplicand to be able to form several partial
products. In 32 bit by 32 bit multiplication, there are two multipliers (B o in register 0
and B1 in register 1) and two multiplicands. Since each multiplicand is involved in two
partial products, there must be two copies of each multiplicand. In Figure 5-25 the copies
of the Ao multiplicand are saved in registers 4 and 6 and the copies of the Al
multiplicand are saved in registers 2 and 8. Then, the following four MPY instructions
form the four required partial products:

MULT MPY 	1,8 	Form the AixBi product in R8 and R9
MPY 	1,4 	Form the 13 1 xA6 product in R4 and R5
MPY 	0,2 	Form the B„xA, product in R2 and R3
MPY 	0,6 	Form the B o xAo product in R6 and R7

Which can be followed by the additions to form the complete 64 bit product in registers
6 through 9:

A 	3,5 	Add two of three 16 bit groups in positions 2 16 to 2"
JNC 	PO 	If no carry, add in R8 contents
INC 	7 	If carry, add one to R7 accumulator

PO 	A 	5,8 	Finish adding 2 16 to 2 31 bits
JNC 	P1 	If no carry, procede to next position adds
INC 	7 	If carry, add one to R7 accumulator

P1 	A 	2,4 	Add part of 2 32 to 2' bits in R2 and R4
JNC 	P2 	If no carry, procede to rest of addition
INC 	6 	If carry, add 1 to R6 accumulator

P2 	A 	4,7 	Finish adding 2" to 2" bits
JNC 	FIN 	If no carry, operation is complete
INC 	6 	If carry, add one to R6 accumulator

FIN RT 	return

The process illustrated by Figure 5-25 is for multiplication of two 32 bit magnitude
numbers. Multiplication of negative numbers can be handled with the same program by
converting all numbers to their absolute value, saving the sign. Then, after the
magnitude multiplication is complete, the sign of the product is the exclusive OR of the
multiplier and multiplicand sign bits. If desired, the product can be complemented or
negated and stored in two's complement form.

5-40 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

PROGRAMMING TASKS

Basis of Procedure:

A x B = (A0 x2'" + A,) x (130x2" + 13 1) =

A x B = Ao xBox2" + (Ai xBo + Ad(%) x 2' 6 + &xI3

Where multiplying by 2' implies shifting the number n positions to the left with respect to a number multiplied by
2" or 1.

Memory Structure:
203
	

247
	

2 31
	

2 ,5 	 2 0

initial conditions

x

R4,R6 	 R2,R8

Ao 	 A I

RO 	 R1

Bo 	 B 1

R6

R2

R8 	 R9

xB I Partial 	Product 	(MPY 1, 8)

R3

A l xBo Partial Product (MPY 0, 2)

R4 R5

A0x13 1 Partial Product (MPY 1, 4)

R7

sum all partial products

AoxBo Partial Product

R6 R7 R8 	 R9

64 Bit Product

Figure 5-25. Multiple Precision Multiplication

54

9900 FAMILY SYSTEMS DESIGN 5-41

and:

16 BIT EXPONENT MULTIPLE WORD FRACTION

PROGRAMMING TASKS Software Design:
Programming Methods
and Techniques

Floating Point Arithmetic

If the system requires the ability to represent fractional numerical quantities instead of
integer numbers, a method must be defined that will provide for the location of the radix
point of such numbers. Just as the decimal point of 75.39 defines a quantity:

7x10 1 + 5x10° + 3x10 -1 + 9x10-2

 the binary point in 101.01 defines a quantity:

1x2 2 + 0x21 + 1x2° + 0x2 -1 + 1x2-2

Although a group of bits can be configured in many ways to define a floating point number,
most floating point representations share the following characteristics:

1) Floating point numbers are represented as a fraction and an exponent (mantissa and
characteristic).

2) The fraction is by convention normalized to lie in the range 1/2.__F‹ 1, e.g., the
binary point lies to the left of the first one bit.

3) The exponent defines the power of 2 by which the fraction is multiplied to evaluate
the floating point number.

Possible floating point representatives include:

8 BIT EXPONENT 	I 	FRACTION

FRACTION

••■••••.

24 BIT FRACTION

When addition or subtraction of two floating point numbers is performed, the following
operations must be performed:
1) Equalize exponents; increment the exponent of the smaller quantity until it is the

same as the larger exponent. With each exponent increment, shift the corresponding
fraction to the right with zero fill from the left.

5-42 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

INPUT/OUTPUT

2) Add or subtract the fractions as required. If a carry results from an addition, the sum
fraction is shifted right, shifting the carry into the fraction, and the exponent is
incremented. If the difference resulting from the subtraction is not normalized (zero
in first bit position) the fraction must be shifted left until a one is in the leftmost
position. With each left shift, the resultant exponent is decremented.

Floating point multiplication can be performed by multiplying the fractions and adding
the exponents. Similarly, floating point division can be performed by dividing the
fractions and subtracting the exponents. After such an operation the fraction must be
normalized and the exponents must be checked for overflow or underflow. Signed
numbers can be handled in the same way that the multiplication of signed integers is
handled.

INPUT/OUTPUT

The most fundamental and necessary instructions of a processor are its input and output
instructions and techniques. Without input and output, the system would not be able to
control or communicate with the external world, and as a result would be of no use.
There are two general ways of implementing input and output operations. One obvious
approach is to use special input and output instructions that are interpreted by the
hardware to apply to the input and output devices. The 9900 instructions that provide
this capability are the CRU or communications register unit instructions (SBO, SBZ,
TB, LDCR, and STCR) and the input and output hardware that respond to these
instructions make up the communications register unit. Another approach to inputting
and outputting information is to simply treat the input and output devices as one of the
system memory locations, in which case any of the 9900 instructions can be used in
accessing these locations. This approach is called memory mapped input/output, since
the devices are assigned a portion of the available memory addresses, and the hardware
must decode the appropriate address to activate a given device. Each of these approaches
has its advantages and disadvantages, and the programmer must be aware of these trade-
offs in order to provide an optimum approach to system input/output.

MEMORY MAPPED INPUT /OUTPUT

The principle advantages of using memory mapped input/output are:
1) The full instruction set is available for manipulating the data in the input/output

device.
111.11■

2) The hardware is straightforward, since address decoding and device timing signals are
required for RAM and ROM memory anyway and these can be simply extended to
handle the I/O subsystem as well.

3) Transfers of information are made 8 or 16 bits at a time, offering a high bit rate
transfer.

51

9900 FAMILY SYSTEMS DESIGN 	 5-43

INPUT/OUTPUT
	

Software Design:
Programming Methods
and Techniques

The disadvantages of memory mapped I/O are:
1) Since some of the 'memory' locations are being used by input or output devices, less

memory is available for instructions and general data storage.
2) Bit transfers must be made 8 or 16 bits at a time. This is wasteful if a given device can

handle a single or a few bits at a time.
3) It is a more expensive technique in terms of pinouts, board space, and layout time.
4) The hardware interface must accomodate the full width memory bus.

The most commonly used instruction in memory mapped I/O operation is the MOV
instruction to effect data transfers. However, it is quite possible to set up an input
output subsystem as general purpose storage or as a workspace and perform shifts,
additions, multiplications, logical operations, and so on, on the data contained in the I/O
subsystem.

Generally, if I/O transfers are to be made 8 or 16 bits at a time and if the system is not
memory bound (memory is needed for program and system data), memory mapped I/O
is often used. Certainly, if performing arithmetic, logic, or other instructions directly on
input/output data is required or advantageous, memory mapped I/O must be used. If
single or multiple bit transfers are all that is required, and transfer rate is not critical,
then memory mapped I/O has no advantage over CRU I/O. CRU I/O hardware is
normally simpler and less expensive.

CRU INPUT/ OUTPUT

The CRU instructions provide for single bit transfers with the SBO (set bit to one), SBZ
(set bit to zero), and TB (test bit) instructions. Multiple bit transfers with the bits
transferred one at a time are possible using the LDCR (load communications register)
and STCR (store communications register) instructions. The advantages of the CRU
instruction approach to I/O are:
1) Any number of bits (up to 16) can be transferred with the appropriate CRU

instruction. Thus, the designer can set up the data transfer to exactly meet the
requirements of the subsystem being serviced. This is especially useful in control
situations where single sense bits are to be examined and single on-off output control
signals are needed.

2) No memory locations are used by the subsystem. The CRU instructions can access
4096 input and 4096 output bits (which is equivalent to 256 data words) in addition to
the 65,536 memory bytes.

The disadvantages of the CRU I/O are:
1) Only data transfers are provided. Arithmetic, logical or other operations must be

performed on the data after it has been moved to one of the general data storage
locations in RAM.

2) The hardware must include the capability to decode and implement the CRU
transfers; however, the added IC complexity is more than offset by reduced package size.

3) Single bit transfer speed may be too slow for some applications.

5-44 	 9900 FAMILY SYSTEMS DESIGN

Software Design:
Programming Methods
and Techniques

INPUT/OUTPUT

411111.

INPUT/OUTPUT METHODS

There are three ways that an input/output transfer can be handled or initiated. The
processor can be interrupted, causing the program to jump to a subroutine that handles
the input/output task. The program can encounter an instruction to transfer data from
an input location or to an output location, for the purpose of displaying results, actuating
control elements, or inputting system status. The processor can be bypassed entirely and
the data transferred directly to or from system memory, using direct memory access.

Interrupt Driver Input/Output

If the timing of input/output transfer is to be controlled by an external system, then the
interrupt driven I/O method must be used. This approach is used in inputting data when
the time of input is random. The external system inputs the data and signals the
processor with an interrupt to indicate that data is in one of the 9900 system input
registers. The 9900 responds by performing a context switch to a subprogram that will
process the data in that register. The interrupt driven approach may also be used in
outputting data when the processor needs to know when the data has been taken-byan
external system. Once the external system takes the data, it can signal the processor with
an interrupt signal. The processor responds by performing a context switch to a
subprogram that will then send more data to that output location.

The interrupt driven I/O procedure provides a mechanism of implementing a
communications sequence known as handshaking. This communications protocol is
illustrated in Figure 5-26. In the input mode, the data-present signal latches the 9900
system input register and serves as the interrupt signal. If desired the processor's reading
of the contents of that register can be used to generate the data-taken signal. Upon
receiving the data taken signal, the external system can then send more data to the 9900
system. In the output mode, the register write operation that sends data to the output
register in the 9900 system can be used as a data-present signal to the external system.
When the external system takes this data, it can use an interrupt signal to notify the
9900 that the register is ready to receive more data.

The interrupt driven approach has the main advantage of providing a means of setting
up a handshaking communications with another system. It can handle data
communications that occur at random or unpredictable times. The main disadvantage of
this type of I/O is that it does involve the processor, slowing down its work on main
system programs and subprograms. Further, since a context switch is involved in
responding to an interrupt, such an approach may require more memory than one of the
other two approaches.

54

9900 FAMILY SYSTEMS DESIGN 	 5-45

INTERRUPT

INPUT

REGISTER

READ
REGISTER

SIGNAL

DATA-PRESENT -4F

DATA

DATA-TAKEN

9900
SYSTEM N 	

•

EXTERNAL SYSTEM

OUTPUT

REGISTER

DATA-PRESENT OUTPUT WRITE
SIGNAL

9900
SYSTEM

INTERRUPT 	
DATA-TAKEN

DATA
EXTERNAL

SYSTEM 	1./

INPUT/OUTPUT
	

Software Design:
Programming Methods
and Techniques

Figure 5-26a. Handshaking Input Transfer.

Figure 5-26b. Handshaking Output Transfer.

Programmed Input/Output

The simplest method of I/O is the programmed I/O. The times and conditions under
which inputs and outputs are to occur are controlled by the system program. For
example, the processor may update a display memory whenever the display is to be
changed. The program determines the new information to be displayed and then outputs
this information to the display storage locations. Similarly, the program may require
information about the status of a subsystem in order to determine subsequent operations.
Such status may be the condition of threshold detectors, the status of serial data
transmission or reception, or some other system condition. When the program
encounters a point at which it needs to check such status words, it simply inputs the
desired word. Of course, as in all I/O methods, the input or output operations can be
handled by either CRU instructions or through standard MOV or other instructions in
memory mapped I/O devices.

The programmed input/output method is a high speed, low hardware cost approach to
input/output, since no subroutine overhead is involved. However, it does not handle
the random input situation very well, unless the program is devoted solely to waiting for
the next signal input to occur. Even then, the program may not check for input
occurrence and perform the desired input instruction before the external system sends
new data, destroying the old data.

5 -46 	 9900 FAMILY SYSTEMS DESIGN

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46

